Transitive Decompositions of Graphs and Their Links with Geometry and Origami

نویسنده

  • Geoffrey Pearce
چکیده

A transitive decomposition of a graph is a partition of the edge or arc set giving a set of subgraphs which are preserved and permuted transitively by a group of automorphisms of the graph. In this paper we give some background to the study of transitive decompositions and highlight a connection with partial linear spaces. We then describe a simple method for constructing transitive decompositions using graph quotients, and we show how this may be used in an application to modular origami.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Transitive decompositions of graphs

A decomposition of a graph is a partition of the edge set. One can also look at partitions of the arc set but in this talk we restrict our attention to edges. If each part of the decomposition is a spanning subgraph then we call the decomposition a factorisation and the parts are called factors. Decompositions are especially interesting when the subgraphs induced by each part are pairwise isomo...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

PACKING AND DECOMPOSITIONS IN TRANSITIVE TOURNAMENTS – PhD THESIS

In this thesis we shall deal with oriented graphs. The motivation for us is a result by Sali and Simonyi (see also a short proof by Gyárfás) where the existence of the decomposition of transitive tournaments on two isomorphic graphs is shown. In this thesis we start to study a problem of packing in transitive tournaments and we consider decompositions and partitions of transitive tournaments. T...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2010